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Abstract

Objective: Cross-sectional genetic association studies have reported equivocal results on the relationship between the
brain-derived neurotrophic factor (BDNF) Val66Met and risk of Alzheimer’s disease (AD). As AD is a neurodegenerative
disease, genetic influences may become clearer from prospective study. We aimed to determine whether BDNF Val66Met
polymorphism influences changes in memory performance, hippocampal volume, and Ab accumulation in adults with
amnestic mild cognitive impairment (aMCI) and high Ab.

Methods: Thirty-four adults with aMCI were recruited from the Australian, Imaging, Biomarkers and Lifestyle (AIBL) Study.
Participants underwent PiB-PET and structural MRI neuroimaging, neuropsychological assessments and BDNF genotyping at
baseline, 18 month, and 36 month assessments.

Results: In individuals with aMCI and high Ab, Met carriers showed significant and large decline in episodic memory
(d = 0.90, p = .020) and hippocampal volume (d = 0.98, p = .035). BDNF Val66Met was unrelated to the rate of Ab
accumulation (d = 20.35, p = .401).

Conclusions: Although preliminary due to the small sample size, results of this study suggest that high Ab levels and Met
carriage may be useful prognostic markers of accelerated decline in episodic memory, and reductions in hippocampal
volume in individuals in the prodromal or MCI stage of AD.
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Introduction

Current models of Alzheimer’s disease (AD) emphasise beta-

amyloid (Ab) as precipitating a cascade of events that result in

synaptic loss and memory impairment [1]. Recent in vitro evidence

suggests neurotrophic factors such as brain-derived neurotrophic

factor (BDNF) may be an indirect moderator of Ab neurotoxicity,

as BDNF and its main receptor, tropomyosin-related kinase B

(TrkB) are not involved in amyloidogenesis, but rather in synaptic

excitation and neuronal plasticity, which may provide an ability

for the central nervous system (CNS) to withstand Ab-related

neuronal death [224]. Further, in individuals with AD or mild

cognitive impairment (MCI), BDNF messenger ribonucleic acid

(mRNA) is reduced substantially in the hippocampus and temporal

lobe, with the extent of BDNF loss associated with the magnitude

of cognitive impairment [5,6]. Unfortunately, there are currently

no validated peripheral markers of central nervous system (CNS)

BDNF [3,4]. Therefore, in humans, conclusions about the role of

BDNF in AD have been based on the measurement of the effect of

BDNF polymorphisms (e.g., Val66Met [rs6265]) on clinical or

pathological features of the disease, or on risk for AD [3,4].

Unfortunately, evidence from such studies has been mixed with

some showing BDNFMet carriers to have increased memory

impairment, brain atrophy or risk of AD while others show that

these same impairments are associated with BDNFVal homozygos-

ity [3,4,7].

We [8] and others [3] have argued that the inconsistency of

relationships between the BNDF Val66Met polymorphism and AD

in human studies suggest the involvement of a moderating factor.

As a proportion of healthy individuals at risk for AD have high Ab
[9,10], and healthy individuals with high Ab show substantial

decline in episodic memory as well as increased hippocampal

atrophy [10212]_ENREF_5, the effects of BDNF polymorphisms

may be moderated by Ab levels. Recently, we observed an

epistatic relationship between the BDNF Val66Met polymorphism

and Ab deposition in which BDNFMet healthy individuals showed a

faster rate of hippocampal atrophy and episodic memory decline

than BDNFVal homozygotes, but only if they had abnormally high

Ab [8]. Thus, this suggests that Ab deposition may moderate the

relationship between the BDNF Val66Met polymorphism and risk

of AD.

Objective but subtle memory impairment with corroborating

evidence of memory difficulties from a reliable informant is

codified as the clinical classification mild cognitive impairment

(MCI), and is associated with increased risk of progression to AD

[12214]. This risk is increased if the MCI classification is

accompanied by the presence of abnormal Ab levels [14].

Therefore, another test of the hypothesis that the BDNF Val66Met

polymorphism increase risk of AD would be if individuals with

MCI and high Ab who are BDNFMet carriers show greater decline

in episodic memory and hippocampal volume than BDNFVal

homozygotes. However, as BDNF is an indirect mediator of Ab
toxicity, a second hypothesis is that the BDNF Val66Met

polymorphism will not affect Ab accumulation.

Methods

Participants
Thirty-four adults with aMCI and high Ab levels enrolled in the

Australian Imaging, Biomarkers and Lifestyle (AIBL) Study were

included in this study [9,15]. Participants had undergone BDNF

genotyping at baseline, and positron emission tomography (PET)

neuroimaging using Pittsburgh Compound B (PiB), structural

magnetic resonance imaging (MRI), and neuropsychological

assessment at baseline, 18 and 36 month follow-up (Table 1).

The process of recruitment and diagnostic classification of adults

with aMCI enrolled in the AIBL cohort has been described in

detail previously [15]. Participants who volunteered were excluded

from the AIBL study if they had any of the following:

schizophrenia; depression (Geriatric Depression Score (GDS) of

6 or greater); Parkinson’s disease; cancer (other than basal cell skin

carcinoma) within the last two years; symptomatic stroke;

uncontrolled diabetes; or current regular alcohol use exceeding

two standard drinks per day for women or four per day for men. A

clinical review panel chaired by DA reviewed all available medical,

psychiatric and neuropsychological information to ensure that

their clinical classification was consistent with international criteria

[16,17]. Clinical classification was blinded to Ab imaging data.

The AIBL study was approved by the institutional ethics

committees of Austin Health, St Vincent’s Health, Hollywood

Private Hospital and Edith Cowan University [15]. All partici-

pants with MCI and their caregivers provided written informed

consent prior to being tested.

Measures
Neuroimaging. PiB-PET imaging was conducted as de-

scribed previously [9,10]. PET standardized uptake value (SUV)

data acquired 40-70 minutes post-PiB injection were summed and

normalized to the cerebellar cortex SUV, resulting in a region-to-

cerebellar ratio termed SUV ratio (SUVR).

Magnetic resonance (MR) images were spatially normalized to

the Montreal Neurological Institute (MNI) single-subject MRI

brain template, [18] using MilxViewH, software developed by the

Australian e-Health Research Centre – BioMedIA (Brisbane,

Australia). As described elsewhere, T1W MR images for each

subject were classified into grey matter (GM), white matter (WM)

and CSF using an implementation of the expectation maximiza-

tion segmentation algorithm[19]. The algorithm computed

probability maps for each tissue type and was used to assign each

voxel to its most likely tissue type and subsequent segmentation.

To improve the accuracy of analysis of the hippocampus, a

separate, manually-delineated template was drawn on the MNI

single-subject every 1 mm on coronal slices, and was subsequently

used for hippocampal volume. The average hippocampal volumes

were normalized for head size using the total intracranial volume,

defined as the sum of GM, WM and CSF volumes.

Genotyping. An 80 ml blood sample was taken from each

participant and 10 ml was used for large scale DNA extraction for

AIBL bio-banking. The BDNF Val66Met polymorphism (rs6265)

was included in a custom Illumina GoldenGate assay, which

included 1536 SNPs, and was performed by the Beijing Genomics

Institute. Val66Met polymorphism had a call rate of greater than

99% and did not depart from Hardy-Weinberg equilibrium in the

AIBL aMCI group.

Clinical and cognitive assessments. The AIBL clinical

and cognitive battery has been described in detail elsewhere and

were administered according to standard protocols by trained

research assistants [15], although the current study focused only

on data for episodic memory. Clinical status was determined using

information which included the Mini-Mental Status Examination

(MMSE) and Clinical Dementia Rating (CDR) Scale. Premorbid

intelligence was estimated using the Wechsler Test of Adult

Reading (WTAR), and depressive and anxiety symptoms were

assessed using the Hospital Anxiety and Depression Scale (HADS).

Data Analysis
The episodic memory composite was computed by standardiz-

ing outcome measures on individual tests (Logical Memory
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delayed recall, California Verbal Learning Test, Second Edition

[CVLT-II] delayed recall) against the baseline mean and SD for

the entire group and then averaging them. As in previous studies

[9,10], adults with aMCI were classified as having high Ab if they

had an SUVR$1.5. Linear mixed model (LMM) analyses of

covariance were conducted to compare linear slopes of change in

episodic memory, hippocampal volume and SUVR between

BDNF groups across baseline, 18 and 36 month assessments.

Linear mixed modelling was employed because of its ability to

model both fixed and random effects, which accounts for multiple

sources of variability, and because it provides improved estimates

of within-subject coefficients (i.e., random effects) in longitudinal

studies. For each LMM, BDNF, time, and BDNF-time interaction

were entered as fixed factors; participant as a random factor; age

and APOE status as covariates; and episodic memory, hippocam-

pal volume or Ab accumulation as dependent variables. For each

outcome, the magnitude of the difference in slopes between the

BDNF Val66Met polymorphism groups was expressed using

Cohen’s d.

Results

Demographic and clinical characteristics of the total sample and

BDNF Val66Met polymorphism groups are shown in Table 1.

Study groups were matched on all demographic and clinical

characteristics.

Relative to BDNFVal homozygotes, BDNFMet carriers showed a

greater rate of decline in episodic memory and reduction in

hippocampal volume over 36 months (Table 2, Figure 1a, 1b),

with the effect size of difference between slopes for both measures,

large in magnitude. Groups did not differ in the rate of Ab
accumulation over 36 months (Table 2, Figure 1c).

Discussion

The first hypothesis that the BDNF Val66Met polymorphism

would moderate memory decline and hippocampal atrophy in

aMCI with high Ab was supported. In adults with aMCI for whom

PiB-PET neuroimaging indicated high baseline Ab, BDNFMet

carriers showed greater episodic memory decline and hippocam-

pal atrophy over 36 months compared to BDNFVal homozygotes,

and the rate of decline between groups was, by convention, large

in magnitude. While increased memory decline and hippocampal

atrophy have been reported previously in adults with aMCI and

high Ab [10212], results of the current study suggests a direct link

between Ab and the BDNF Val66Met polymorphism on

progressive memory decline and hippocampal atrophy in prodro-

mal AD.

The second hypothesis that the BDNF Val66Met polymorphism

would not moderate the rate of Ab accumulation in adults with

aMCI and high Ab was also supported. While Ab levels increased

for both BDNFMet carriers and BDNFVal homozygotes over 36

months, the rate of Ab accumulation across 36 months was not

different between groups (Figure 1c). Thus, while high baseline Ab
was associated with memory decline and hippocampal atrophy,

the deleterious effects were reduced in individuals who carried the

BDNF Val66Met polymorphism that has been associated with

greater secretion of the BDNF protein (i.e., BDNFVal homozy-

gotes).

The results of this study are consistent with our previous finding

in healthy individuals, where BDNFMet carriers with high Ab
showed significantly higher rates of episodic memory decline and

hippocampal atrophy than BDNFVal homozygotes, despite no

differences in the rates of Ab accumulation [8]. Further, these

results are consistent with animal studies, which have shown that

the secretion of mature BDNF is crucial in the neuronal integrity

of the hippocampus [2,20], and that Ab decreases BDNF levels by

reducing phosphorylated cAMP response element binding protein,

which in turn regulates BDNF transcript expression [5]. Human

and animal neuropathological studies have also found that

interactions between BDNF Val66Met and Ab-related synaptic

changes occur in the hippocampus, and that these changes are

related directly to memory [2,20,21]. Finally, genetic databases do

not identify BDNF Val66Met polymorphism as increasing risk for

AD [22]. Taken together, these data suggest that while BDNF

Val66Met is unrelated to the presence of Ab or to its

accumulation, it may moderate the extent to which Ab affects

brain structure and memory function, at least in the prodromal

stages of AD.

An important caveat of the current study is that the AIBL study

is not an epidemiological sample. The selection of MCI groups

was biased towards the inclusion of individuals with aMCI, and

participants were predominantly highly educated, and had few

existing or untreated medical or psychiatric illnesses. As such, it

Table 1. Demographic means (SD) for MMSE, CDR-SB, premorbid IQ and HADS scores, and median years of education, for overall
and each BDNF group at baseline assessment.

Overall (n = 34) BDNFVal homozygote (n = 24) BDNFMet carrier (n = 10) p

N (%) female 17 (50%) 12 (50%) 5 (50%) 1.00

N (%) APOE e4 28 (82%) 19 (79%) 9 (90%) .450

Age (years) 76.41 (6.36) 75.33 (5.47) 79.00 (7.83) .127

SUVR Neocortex 2.22 (0.41) 2.14 (0.36) 2.39 (0.49) .113

MMSE 27.03 (1.90) 27.08 (1.77) 26.90 (2.28) .802

CDR-SB 1.03 (0.75) 1.04 (0.82) 1.00 (0.56) .890

Premorbid IQ 109.09 (7.03) 107.63 (7.32) 112.60 (4.97) .059

HADS-Depression 3.50 (2.44) 3.54 (2.60) 3.40 (2.12) .880

HADS-Anxiety 4.82 (2.52) 4.71 (2.56) 5.10 (2.51) .113

Note: One-Way ANOVA indicated no significant differences between Val/Val homozygotes and Met carriers on any demographic or clinical characteristic, p’s ,.05. x2

indicated that number of APOE e4 carriers, p = .45, and number of females, p = 1.00, were not higher in Met carriers.
Standardized Uptake Value Ratio; MMSE = Mini-Mental State Examination; CDR-SB = Clinical Dementia Rating Scale, Sum of Boxes Score; HADS-Depression = Hospital
Anxiety and Depression Scale, Depression Subscale; HADS-Anxiety = Hospital Anxiety and Depression Scale, Anxiety Subscale.
doi:10.1371/journal.pone.0086498.t001
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would be important for these findings to be replicated in adults

with MCI and high Ab in population-based studies, such as the

Mayo Clinic Study of Aging, where it is possible that the effect of

the BDNF Val66Met polymorphism on Ab-related decline may be

greater than that observed here. A second caveat is that we only

investigated indirect interactions between APOE, BDNF Val66Met,

Ab and cognitive decline in adults with aMCI. This was primarily

due to the small sample size, equivalence in the proportion of

APOE e4 carriers in BDNFMet carriers and BDNFVal homozygotes,

and the previous observation that APOE e4 does not interact with

BDNF levels to affect cognitive function [23]. However, further

investigation of the relationship between APOE, BDNF Val66Met,

and Ab on change in cognition needs to be conducted in larger,

prospective studies of APOE allele groups [24,25]. Finally, due to

small sample sizes, we were unable to investigate whether

BDNFVal66Met polymorphism has an effect on cognitive decline

in individuals with MCI and low Ab. However, as individuals with

MCI and low Ab do not show memory decline over 18 or 36

Figure 1. Trajectories of change in Episodic Memory Composite (1a), Hippocampal volume atrophy (1b), and Ab accumulation (1c)
for Val homozygotes and Met carriers (error bars represent 95% confidence intervals).
doi:10.1371/journal.pone.0086498.g001

Table 2. Mean slopes (SD) for each neuropsychological measure, and magnitude of difference (Cohen’s d) in slopes.

Episodic Memory Hippocampal Atrophy Ab accumulation

(df) F p (df) F P (df) F p

Age (1,34) 0.312 .580 (1,32) 1.042 .315 (1,35) 4.538 .040

APOE (1,33) 1.242 .273 (1,31) 2.951 .096 (1,33) 1.437 .239

Time (1,24) 36.07 .000 (1,17) 166.041 .000 (1,20) 82.358 .000

BDNF (1,28) 0.756 .392 (1,32) 5.412 .026 (1,34) 0.997 .325

BDNF x Time (1,24) 6.228 .020 (1,17) 5.241 .035 (1,20) 0.735 .401

Mean slope (SD) Mean slope (SD) Mean slope (SD)

Ab+ BDNFVal homozygote (n = 24) 20.189 (0.310) 20.128 (0.057) 0.079 (0.049)

Ab+ BDNFMet carrier (n = 10) 20.457 (0.270) 20.184 (0.057) 0.096 (0.046)

Cohen’s d (95%CI) 0.90 (0.11, 1.64) 0.98 (0.19, 1.73) 20.35 (21.09, 0.40)

doi:10.1371/journal.pone.0086498.t002
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months [12,14], and as we have previously shown that in healthy

older adults, BDNFVal66Met polymorphism only exerts its effects

on cognitive function and brain structure in individuals with high

Ab [8], we hypothesize that the BDNFVal66Met polymorphism

would not have an effect on cognitive function and hippocampal

volume in individuals with MCI and low Ab.

Notwithstanding this limitation, results of the current study

provide preliminary support for high Ab and BDNF Val66Met

polymorphism as important prognostic markers of increased

memory decline and hippocampal atrophy in individuals with

prodromal AD [13]. Further, as pharmacologically increasing

BDNF levels in AD mouse models can ameliorate synaptic

dysfunction and improve memory [26], and increasing BDNF

secretion through aerobic exercise have been shown to improve

memory performance in humans at risk for AD [27], interventions

geared toward increasing BDNF levels may be a potential

therapeutic strategy for the early stages of AD.
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